Abstract

We present a forward numerical modeling approach for fault-bend folding based on a velocity description of deformation. The approach incorporates algorithms capable of modeling multiple fault bends of different geometries (e. g. fault bends not stepping up from a detachment), imbricates, and variable velocity-boundary orientations, with corresponding varying slip ratios. When modeling contraction, the approach is capable of reproducing rounded-hinges and parallel folds with localized bed thinning or thickening commonly observed in natural structures. Extensional fault-bend folds can be modeled using the same set of equations, with the minor modification that velocity boundary orientations are defined independently of the fault shape. The modeled structures conserve area, and commonly observed features of extensional fault-bend folds, such as rollover structures with growth, are produced. Thus, we present a unified inclined-shear and flexural-slip general transformation associated with displacement over bends in faults, describing the theoretical framework which we have implemented in the associated program, fbfFor. We show the utility of this kinematic approach by matching seismic reflection examples, analog models, and mechanical models of fault-bend folds to create progressive, balanced kinematic interpretations and gain further insight into the formation of these structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.