Abstract

This article presents tools for the design of control laws inducing robust controlled forward invariance of a set for hybrid dynamical systems modeled as hybrid inclusions. A set has the robust controlled forward invariance property via a control law if every solution to the closed-loop system that starts from the set stays within the set for all future time, regardless of the value of the disturbances. Building on the first part of this article, which focuses on analysis, in this article, sufficient conditions for generic sets to enjoy such a property are proposed. To construct invariance inducing state-feedback laws, the notion of robust control Lyapunov function for forward invariance is defined. The proposed synthesis results rely on set-valued maps that include all admissible control inputs that keep closed-loop solutions within the set of interest. Results guaranteeing the existence of such state-feedback laws are also presented. Moreover, conditions for the design of continuous state-feedback laws with minimum point-wise norm are provided. Major results are illustrated throughout this article in a constrained bouncing ball system and a robotic manipulator application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.