Abstract

We discuss a class of stochastic second-order PDEs in one space-dimension with an inner boundary moving according to a possibly nonlinear, Stefan-type condition. We show that proper separation of phases is attained, i.e., the solution remains negative on one side and positive on the other side of the moving interface, when started with the appropriate initial conditions. To extend results from deterministic settings to the stochastic case, we establish a Wong–Zakai-type approximation. After a coordinate transformation, the problems are reformulated and analyzed in terms of stochastic evolution equations on domains of fractional powers of linear operators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call