Abstract
Zebrafish are now well established as the preeminent vertebrate model with which to carry out gene discovery/forward genetic screens to identify the molecular genetic basis of biological processes. Gene discovery screens in zebrafish have already provided novel insight into mechanisms of glial cell development and function. The vast majority of genetic screens in zebrafish are based around a three generation screen that starts with the random induction of mutations in adult males using the chemical mutagen ENU. Here we outline the methods that underlie this type of screen, detailing each step, from ENU mutagenesis, through the breeding schemes required to recover homozygous mutant animals in subsequent generations, the screening procedure itself, with a focus on the analysis of myelinating glia, and the subsequent confirmation of mutant phenotypes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.