Abstract

TRPV4 is a polymodal cation channel gain-of-function (GOF) allele which causes skeletal dysplasia in humans. To better understand its gating, we screened for additional GOF alleles based on their ability to block yeast proliferation. Repeatedly, only a limited number of such growth-blocking mutations were isolated. Expressed in oocytes, wild-type channels can be strongly activated by either hypotonicity or exposure to the potent agonist 4alphaPDD, although the GOF channels behaved as if they were fully prestimulated as well as lacking a previously uncharacterized voltage-dependent inactivation. Five of six mutations occurred at or near the inner ends of the predicted core helices, giving further direct evidence that this region indeed forms the main intracellular gate in TRP channels. Surprisingly, both wild-type channels as well as these GOF channels maintain strong steady-state outward rectification that is not due to a Ca(2+) block, as has been proposed elsewhere. We conclude that TRPV4 contains an additional voltage-dependent gating mechanism in series with the main intracellular gate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.