Abstract
Feature selection has many applications in solving the problems of multivariate time series . A novel forward feature selection method is proposed based on approximate Markov blanket. The relevant features are selected according to the mutual information between the features and the output. To identify the redundant features, a heuristic method is proposed to approximate Markov blanket. A redundant feature is identified according to whether there is a Markov blanket for it in the selected feature subset or not.The simulations based on the Friedman data, the Lorenz time series and the Gas Furnace time series show the validity of our proposed feature selection method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.