Abstract

In this article, we study fast shocks at CIR boundaries during an extended interval of 15 consecutive major high speed solar wind streams in 1992–1993. Ulysses was 4–5 AU from the sun. The Abraham-Schrauner shock normal method and the Rankine-Hugoniot relations were used to determine fast shock directions and speeds. Out of 33 potential CIR shocks, 14 were determined to be fast forward shocks (FSs) and 14 were fast reverse shocks (RSs). Of the remaining 5 events, 2 were forward waves and 3 were reverse waves. CIR edges at latitudes below ∼30 o were, for the most part, bounded by fast magnetosonic shocks. The forward shocks were generally quasi-perpendicular (average θ nBo = 67 o). The reverse shocks were more oblique (average θ nBo = 52 o), but they extended to all angles. Both FSs and RSs had magnetosonic Mach numbers ranging from 1 to 5 or 6. The average Mach numbers were 2.4 and 2.6 for FSs and RSs, respectively. The shock Mach numbers were noted to generally decrease with increasing latitude. The non-shock events or waves were noted to occur preferentially at high (∼−30° to −35°) heliolatitudes where stream-stream interactions were presumably weaker. These results are consistent with expectations, indicating the general accuracy of the Abraham-Schrauner technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call