Abstract

Abstract Hybrid robots consist of both serial and parallel mechanisms, which have advantages in stiffness and workspace compared with serial/parallel robots when machining composite material. However, the forward and inverse kinematics of hybrid robots generally do not have analytic solutions. This paper deals with the analytic forward and inverse kinematics solutions of a 5-degree-of-freedom (DOF) hybrid robot which consists with a 3-DOF 2UPU/SP parallel mechanism (PM) and a 2-DOF rotating head. In the forward kinematic problem, a method is proposed to transfer the high order kinematic equation to a 4th-order polynomial based on the Sylvester's dialytic elimination, and the analytic solutions can be further obtained by Ferrari's method. In the inverse problem, the redundant Euler angles expressed by four rotations are firstly proposed for decoupling different motions, then, the closed-form solution of inverse kinematics can be found. Finally, a simulation trajectory is given, and the result shows that the accuracy of the solutions’ calculation reaches femtometer grade and the efficiency reaches microsecond grade; furthermore, an experiment is performed on the prototype to validate the effectiveness of the proposed forward and inverse kinematics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call