Abstract

We report on a 2-year-old Japanese girl with Cornelia-de Lange syndrome (CdLS) who had mental and growth retardation, together with characteristic facial anomalies and mild extremity malformations. She had a balanced chromosomal translocation, 46,XX,t(5;13)(p13.1;q12.1) de novo. Surprisingly, this was the same translocation that had provided a clue to the identification of a major causative gene for CdLS, NIPBL [Krantz et al., 2004; Tonkin et al., 2004]. Using fluorescence in situ hybridization (FISH), the breakpoint was confirmed to lie within NIPBL at 5p13.1. Furthermore, array-based comparative genomic hybridization (array-CGH) demonstrated a cryptic 1-Mb deletion harboring six known genes at 1q25-q31.1. A FISH analysis of her parents confirmed that the deletion was de novo. Although patients with interstitial deletions at 1q are rare, some of their features were similar to those observed in our patient, indicating that her clinical manifestations are likely to be affected by not only the disruption of NIPBL but also the concomitant microdeletion at 1q25-q31.1. The present case suggests that array-CGH can uncover cryptic genomic aberrations affecting atypical phenotypes even in well-known congenital disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.