Abstract
This study investigates the potential for zinc fortification of native, heat‐moisture treatment (HMT), and annealing (ANN), modified rice starches, using neutral extracted rice starch as precursor. The zinc content, micrographs, X‐ray crystallinity, pasting, and thermal properties are evaluated. The fortified rice starch increases crystallinity, thermal stability, and gelatinization enthalpy, as well as lowers peak viscosity and gelatinization temperature when compared to its precursor (native rice starch). The ANN fortified starch shows decreased crystallinity, thermal stability, gelatinization temperature, and enthalpy, while the HMT starch has increased crystallinity and final viscosity. The results indicate that the native rice starch has higher zinc entrapment potential (1359 mg Kg−1) than the physically modified starches (<100 mg Kg−1); this is attributed to the protein spread over the surface of the granules and the pre‐gelatinization of the surface of the starches after modification, which serve as a barrier to zinc cations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.