Abstract

Bacterial resistance is a real threat to human health. One of the most common strategies used to overcome this problem is the combination therapy. This study proposes a new chitosan-based nano-in-microparticles (NIMs) antibacterial platform that can deliver multiple antibacterial therapeutics at the same time. Chitosan (CS) was PEGylated to overcome its limited water solubility. Then, the antibacterial activity of the resulting PEG-CS was fortified via conjugation with dendritic polyamidoamine hyperbranches (HB) as well as in-situ immobilization of silver nanoparticles (AgNPs) to be efficient against multiple bacterial strains. Montmorillonite nanoclay (MMT) was prepared and used to encapsulate ibuprofen (IBU) as anti-inflammatory drug to reduce any concomitant inflammatory response during bacterial infection. The successful synthesis of PEG-HBCS-AgNPs as well as IBU-MMT nanocomplex was confirmed using FTIR, 1H NMR, DSC, TGA and EDX. SEM micrographs showed a complete formation of NIM spherical particles with a size around 13 µm. Besides, the newly developed drugs-loaded CS-based NIM formulation showed a better widespread activity on the tested aerobic and anaerobic bacterial species, and it may represent, after further optimization, a promising approach for overcoming multiple-bacterial infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.