Abstract

Forskolin, a potent activator of cyclic AMP generating systems, has been proposed to act directly on the catalytic unit of adenylate cyclase. Nevertheless, some arguments indicate a possible role of the guanosine triphosphate-binding regulatory protein in forskolin action on adenylate cyclase. In this study, we have observed an increase in the apparent sedimentation coefficient of solubilized adenylate cyclase, elicited by forskolin, both in rat liver (from 6.4 +/- 0.1 to 7.2 +/- 0.1 S) and rat striatum (from 6.7 +/- 0.1 to 7.6 +/- 0.1 S). On both systems, a similar increase in the sedimentation coefficient was observed after preactivation of the enzyme with guanosine 5'-(beta, gamma-imido)triphosphate (Gpp(NH)p). In contrast to the Gpp(NH)p effect, the forskolin action was found to be reversible. Simultaneous pretreatments of adenylate cyclase with forskolin and Gpp(NH)p did not induce additive increases of the apparent sedimentation coefficient of adenylate cyclase. The modification of the size of solubilized adenylate cyclase was corroborated by gel filtration studies. In rat liver membranes, the Stokes radius of the solubilized enzyme increased from 59 +/- 1 A for basal state to 65 +/- 1 A for forskolin preactivated state. A possible explanation of our findings is that forskolin may stabilize the complex between the GTP-binding regulatory protein and the catalytic unit of adenylate cyclase in a reversible manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call