Abstract

Therapies including nucleoside analogs are associated with severe toxic side effects and acquirement of drug resistance. We have previously reported the drug delivery in the form of 5′-triphosphates (NTP) encapsulated in cross-linked cationic networks of polyethylenimine (PEI) and PEG/Pluronic® polymers (Nanogels). In this study, Nanogels, containing biodegradable PEI that could easily dissociate in reducing cytosolic environment and form products with minimal toxicity, were synthesized and displayed low cytotoxicity. Toxicity of Nanogels was clearly dependent on the total positive charge of carriers and was 5–6 fold lower for carriers loaded with NTP. Though intracellular ATP level was immediately reduced by ca. 50% following the treatment with Nanogels, it was largely restored 24 h later. Effect of Nanogels on various respiratory components of cells was reversible too, and, therefore, resulted in low immediate cell death. Nanogel alone and formulations with AZT-TP demonstrated a much lower mitochondrial toxicity than AZT. As an example of potential antiviral applications of low-toxic Nanogel carriers, a 5′-triphosphorylated Ribavirin–Nanogel formulation was prepared that demonstrated a 30-fold decrease in effective drug concentration (EC 90) and, totally, a 10-fold increase in selectivity index compared to the drug alone in MDCK cells infected with influenza A virus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call