Abstract

The purpose of this research was to develop and evaluate different preparations of sustained delivery systems, using Carbopols as carriers, in the form of matrices and three-layer tablets with isosorbite mononitrate. Matrix tablets were prepared by direct compression whereas three-layer tablets were prepared by compressing polymer barrier layers on both sides of the core containing the drug. The findings of the study indicated that all systems demonstrated sustained release. The properties of the polymer used and the structure of each formulation appear to considerably affect drug release and its release rate. The three-layer formulations exhibit lower drug release compared to the matrices. This was due to the fact that the barrier-layers hindered the penetration of liquid into the core and modified drug dissolution and release. The geometrical characteristics/structure of the tablets as well as the weight/thickness of the barriers-layers considerably influence the rate of drug release and the release mechanisms. Kinetic analysis of the data indicated that drug release from matrices was mainly attributed to Fickian diffusion while three-layer tablets exhibited either anomalous diffusion or erosion/relaxation mechanisms. The advantage of Carbopol formulations is that a range of release profiles can easily be obtained through variations in tablet structure and thus Carbopols are appropriate carriers of oral sustained drug delivery systems for soluble drugs such as the isosorbite mononitrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call