Abstract

The Bloch equation containing a Zeeman modulation field is solved analytically by treating the Zeeman modulation frequency as a perturbation. The absorption and dispersion signals at both 0° and 90° modulation phase are obtained. The solutions are valid to first order in the modulation frequency, but are otherwise valid for any value of modulation amplitude or microwave amplitude. A first order treatment of modulation frequency is shown to be a valid approximation over a wide range of typical experimental EPR conditions. The solutions derived from the Bloch equation suggest that the effect of over-modulation on first and second harmonic EPR spectra can be formulated as a mathematical filter that smoothes and broadens the under-modulated signal. The only adjustable filter parameter is a width that is equivalent to the applied peak-to-peak modulation amplitude. The true spin–spin and spin–lattice relaxation rates are completely determined from the under-modulated spectrum. The filters derived from the analytic solutions of the Bloch equation in the linear limit of modulation frequency are tested against numerical solutions of the Bloch equation that are valid for any modulation frequency to show their applicability. The filters are further tested using experimental EPR spectra. Experimental under-modulated spectra are mathematically filtered and compared with the experimental over-modulated spectra. The application of modulation filters to STEPR spectra is explored and limitations are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call