Abstract

Solid lipid nanoparticles (SLN) have been formulated using various batch processes, e.g., solvent diffusion evaporation, emulsification solvent evaporation followed by size reduction using high-pressure homogenization (HPH) or ultrasonication. However, for the manufacturing of formulations, continuous processes are always preferred over batch processes since they are more efficient and offer better quality of the end product. Hence, we developed topical SLN of ibuprofen (IBU) using hot melt extrusion (HME), prepared a gel formulation, and performed its in vitro and in vivo evaluation. Effect of different variables of HME equipment and materials used in SLN was optimized using design of experiment (DoE) approach. Stable 0.48% IBU SLN with particle size 60.2 ± 4.81nm and entrapment efficiency 90.41 ± 3.46% were developed which further gelled using 1% carbopol 981A. Drug release study, skin deposition study, and in vivo anti-inflammatory activity studies showed 84.37 ± 4.65% drug release, 12.05 ± 0.81% drug deposition, and 40.17 ± 2.41% edema inhibition respectively in case of IBU SLN gel (IBU-SLN-G) which was significantly higher (p < 0.05) than control IBU gel (C-IBU-G) with 50.11 ± 0.57% drug release, 4.11 ± 1.10% deposition, and 20.08 ± 3.23% edema inhibition respectively. In conclusion, HME offers a single step process for manufacturing for SLN which avoids high stress particle size reduction techniques used for SLN preparation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.