Abstract

Oil-in-water (O/W) emulsions can be utilized as effective pesticide delivery systems in the agricultural industry. In this study, the effects of hydrophile-lipophile balance (HLB), concentration, and location of surfactants on the formation and physical stability of O/W emulsions suitable for pesticide applications was investigated using dynamic light scattering and vertical laser profiling. A non-polar pesticide (lambda-cyhalothrin) was used as a model. The pesticide emulsion with the highest stability was obtained using a commercial non-ionic surfactant (polyoxyethylene castor oil ether, EL-20) with a required HLB value of 10.5. Emulsion stability increased as the surfactant concentration was increased from 2 to 6%, which was attributed to the formation of smaller oil droplets during emulsification. Emulsions prepared with the surfactant initially in the oil phase were more stable than those prepared with it initially in the aqueous phase. The optimum formulation of the pesticide emulsion was determined as follows: 5% lambda-cyhalothrin (active ingredient) and 6% EL-20 (surfactant) dissolved in 5% S-200 (aromatic hydrocarbon, as oil phase), then deionized water up to 100%, which met the quality indicators set by the FAO standards. The present study is expected to provide useful information to improve the stability of pesticide emulsions for commercial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.