Abstract

SUMMARYResearch backgroundApple juice is one of the most popular and liked beverages worldwide. Due to the increased health consciousness among consumers, beetroot and chokeberry juices have also rising consumption trends. Despite representing a considerable percentage of the processed fruit and rich source of bioactive compounds, fruit pomace, remaining after juice production, has still been underutilised. Here, the possibility of using apple, beetroot and chokeberry pomace in liqueur formulations is investigated.Experimental approachApple and chokeberry liqueurs were produced from apple and chokeberry pomace extracts, respectively. Apple/chokeberry and apple/beetroot liqueurs were obtained by combining apple pomace with chokeberry and beetroot pomace extracts in ratios 50:50 and 70:30, respectively. The sensory quality and acceptability of freshly prepared liqueurs were evaluated by experts and consumers. Sugars and phenolics were identified and quantified by high-performance anion-exchange chromatography with pulsed-amperometric detection (HPAEC-PAD) and high-performance liquid chromatography–diode array detection–tandem mass spectrometry (HPLC–DAD–MS/MS), respectively. Storability was preliminarily evaluated based on monitoring of total phenolic concentration, antioxidant activity and colour each month during 6 months of storage at 4 and 22 °C.Results and conclusionsThe expert and the consumer testing indicated that apple and chokeberry pomace could be used as raw materials without any flavour corrections while apple/beetroot pomace liqueur would require modification. High total phenolic content and antioxidant activity were found in all freshly prepared liqueurs, with chokeberry liqueur being by far superior. Among identified phenolics, ellagic acid and phlorizin were quantified as the most prominent, except in chokeberry liqueur, where phlorizin was not quantified. Despite the decrease in total phenolic concentration and antioxidant activity after 6 months, liqueurs still represented a rich source of phytochemicals. The highest phenolic compound retention and antioxidant activity maintenance were observed in chokeberry liqueur. Also, the appealing colour was retained despite the changes detected in chromatic characteristics.Novelty and scientific contributionThe possibility of apple, beetroot and chokeberry pomace restoration into the food chain by the production of liqueurs has been demonstrated for the first time. Functional and sensorial properties of newly developed liqueurs indicated that the selected pomace represents the promising raw material for liqueur production. The applied approach represents a contribution to the circular economy in juice production.

Highlights

  • One of the most promising waste materials from the food industry is pomace, a by-product in juice production, which mainly contains skins, pulp, seeds and stalks of the fruit

  • The expert and the consumer testing indicated that apple and chokeberry pomace could be used as raw materials without any flavour corrections while apple/beetroot pomace liqueur would require modification

  • The highest value of turbidity was determined in the apple/beetroot pomace liqueur (250.4 nephelometric turbidity units (NTU)), followed by apple pomace liqueur (240.0 NTU) and apple/chokeberry pomace liqueur (229.8 NTU), whereas the lowest value was ascribed to chokeberry pomace liqueur (102.6 NTU)

Read more

Summary

Introduction

One of the most promising waste materials from the food industry is pomace, a by-product in juice production, which mainly contains skins, pulp, seeds and stalks of the fruit. Phenolic compounds are mainly found in fruit skin as natural plant protection from. Apple pomace makes up to 25–35 % of the processed fruit [4]. Phenolic compounds (catechins, procyanidins, phloridzin, phloretin glycosides, caffeic and chlorogenic acid, quercetin and cyanidin glycosides) and dietary fibre (soluble pectins, β-glucans, galactomannan gums, nondigestible oligosaccharides including inulin and insoluble lignin, cellulose and hemicelluloses) of apple pomace exhibit antioxidative, cardioprotective, antidiabetic and antilipemic effects and improve the function of the gastrointestinal tract. Despite numerous health benefits and high potential for utilisation as a substrate, source of bioactive compounds or ingredients of various food products, this abundant, available and renewable natural resource is still underutilised

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call