Abstract
AbstractThe present study aims to determine the mix proportion of binder, heavyweight aggregates, water-to-binder ratio, and additives to develop self-compacting concrete with a bulk density higher than 2600 kg m−3. It also aims to evaluate the engineering properties, pore structure, and microstructure of established heavyweight self-compacting concrete. Barite (BA), magnetite (MAG) or their mix (MIX) were used as fillers, while binder was composed of Portland cement, blast furnace slag, metakaolin, and limestone at a ratio of 65:15:5:15. Based on text results of V-funnel, S-Cone diameter and S-Cone time, the proportion mix and binder: filler: binder to cement ration was optimized as follows: 1) BA 1: 3.5: 0.42, 2) MAG 1: 4: 0.42, and 3) MIX 1: 3.75: 0.42 with maximal aggregate size not exceeding 2 mm. Not only the bulk density was influenced by aggregate, but also, the mechanical properties, shrinkage, dynamic modulus of elasticity pore structure, and microstructure were also found to be dependent on fillers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.