Abstract

Major impediments to the land application of coal combustion byproducts (fly ash) for crop fertilization have been the presence of heavy metals and their relatively low and imbalanced essential nutrient concentration. Although nutrient deficiencies, in particular N, P, and K, may be readily augmented by adding organic wastes such as sewage sludge and animal manure, the indiscriminate application of mixtures to crops can cause excessive soil alkalinity, imbalanced nutrition (P, Mg), phytotoxicities (B, Mn, ammonia, nitrite), and unspecified contamination of the food chain by elements such as As. In this study, nutrient availability data and linear programming (LP) were used to solve these problems by formulating fly ash-biosolid triple mixtures which complied with both plant and soil fertilization requirements, and met existing U.S.A. environmental regulations for total As application in sewage sludge (EPA-503). Thirteen different fly ash samples were LP-formulated with sewage sludge, poultry manure, CaCO3, and KCl to yield 13 unique mixtures, which were then evaluated in greenhouse pot experiments. Results indicated that normal growth and balanced nutrition of sorghum (Sorghumbicolor L.) and soybean (Glycine max (L.) Merr.) crops were achieved in all mixtures, comparable to a balanced fertilizer reference treatment, and significantly better than the untreated control. Phytotoxic levels of B, NH3, NO2 -, overliming problems, and excessive As levels which were previously encountered from indiscriminate use of these waste materials, were all well controlled by LP-formulated mixtures. Most fly ash quantities in mixtures were limited by either available B (< 4 kg ha-1) or total As (< 2 kg ha-1) restrictions during formulation, while the most alkaline fly ash was limited by its high calcium carbonate equivalence (CCE = 53.9%). These results confirmed that fly ash land application should not be at arbitrary fixed rates, but should be variable, depending on the soil, crop, and particularly the fly ash chemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call