Abstract

Evaluation of the controlled release of ciprofloxacin (CIP.HCl) and the antibacterial efficacy of alginate (ALG)-based nanocarriers constitute the primary objectives of the current work. Herein, ALG-based nano-structures were prepared by the co-precipitation method and thoroughly analyzed using different characterization techniques, i.e., fourier transform infrared (FT-IR), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and zeta potential (ZP). The intense peaks emerged at 500, 545, and 750 cm−1 due to the CeO bond. Peaks that appeared at 550–600 cm−1 and 525 cm−1 are due to the stretching vibrations of FeO and ZnO bonds, respectively. Lowering of the peaks from 1640 to 1630 cm−1 and 1420 to 1384 cm−1 were observed in ALG-based nanocomposite (NC) due to the interaction of ALG with metal oxides (MO), which confirmed the formulation of CeO2/ZnFe2O4/ALG nanocomposite. The diffraction peaks at 28.6°, 56.6°, 76.5°, 37°, 47.9°, 62.3°, 74°, 13°, 21° confirmed the synthesis of MO (crystallite size 15.74 nm) and CeO2/ZnFe2O4/ALG (12 nm). In accordance with morphological studies, CeO2/ZnFe2O4 oxides had a uniform distribution throughout the relatively smooth and permeable surface of the ALG-based NC. Ciprofloxacin (CIP) was used as a model drug. Negative values of ZP revealed that CIP-loaded nanocomposite (CeO2/ZnFe2O4/ALG/CIP) had more stability than CeO2/ZnFe2O4/ALG. The maximum percentage of loading around 25 % on ALG NC was examined using the optical density (OD) method at pH 5.5. Correlation coefficients from the first order (0.971), Korsmeyer (0.9858), and Hixson (0.9021) models show the best-fitted models of the release profile in all circumstances. The release mechanism was investigated using various kinetics models. The controlled drug released was observed around 17 % at 40 °C after 3 h at pH 7.4, which is almost identical to the body temperature of a human, which is 37 °C. Similarly, after 24 h, sustained and controlled in-vitro release of the drug was studied, and it was 37, 72, and 74 % at pH 2.2, 7.4, and 9.4, respectively. Thus, prepared ALG-based NC is suitable for the controlled in-vitro release of (CIP.HCl). Metal oxides (CeO2/ZnFe2O4) and ALG-based nanocomposite (CeO2/ZnFe2O4/ALG) showed great antibacterial activity against Staphylococcus aureus (S. aureus) like 15 mm and 14 mm than Escherichia coli (E. coli).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.