Abstract
This paper inquires on the options pricing modeling using Artificial Neural Networks to price Apple(AAPL) European Call Options. Our model is based on the premise that Artificial Neural Networks can be used as functional approximators and can be used as an alternative to the numerical methods to some extent, for a faster and an efficient solution. This paper provides a neural network solution for two financial models, the BlackScholes-Merton model, and the calibrated-Heston Stochastic Volatility Model, we evaluate our predictions using the existing numerical solutions for the same, the analytic solution for the Black-Scholes equation, COS-Model for Heston’s Stochastic Volatility Model and Standard Heston-Quasi analytic formula. The aim of this study is to find a viable time-efficient alternative to existing quantitative models for option pricing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.