Abstract

The aim of this study was to design a mixture consisting of plant-derived preparations containing inhibitors of carbohydrate digestion and/or glucose absorption that could lower postprandial glycemia and attenuate dietary-induced disorders. The following standardized preparations were tested: white mulberry leaf extract, green coffee bean extract, white kidney bean extract, pomelo fruit extract, bitter melon fruit extract, and purified l-arabinose. The study design was composed of oral sucrose and starch tolerance tests in Wistar rats preceded by a single ingestion of the preparations or their mixtures. Then, a 20 week-long experiment was conducted on rats that were fed a high-fat diet and supplemented with the most effective mixture. Based on the results of the oral sucrose and starch tolerance tests, the mulberry leaf extract, l-arabinose, kidney bean extract, and coffee bean extract were selected for composing three mixtures. The most effective inhibition of postprandial glycemia in the oral tolerance tests was observed after the ingestion of a mixture of mulberry leaf, kidney bean, and coffee bean extract. The glucose-lowering effect of the mixture and its effective dosage was confirmed in the feeding experiment.

Highlights

  • An excessive intake of refined carbohydrates has been linked to the epidemic increase of obesity and type 2 diabetes worldwide [1,2]

  • For both the sucrose tolerance as testthe (SuTT) and starch tolerance testatleaf (StTT), the lowest area under the blood glucose curve (AUC) values were noted in the acarbose group, and they were significantly lower than in the other groups

  • In the SuTT, the AUC values were significantly reduced in the coffee bean extract (CBE), mulberry leaf extract (MLE), kidney bean extract (KBE), and pomelo fruit extract (PFE) group compared to that of the control group, and the mulberry leaf extract tended to be the most efficient of the tested extracts

Read more

Summary

Introduction

An excessive intake of refined carbohydrates has been linked to the epidemic increase of obesity and type 2 diabetes worldwide [1,2]. Impaired glucose tolerance and insulin resistance are key disorders of glucose metabolism that lead to the development of metabolic syndrome and type 2 diabetes. One of the approaches for lowering postprandial glycemia is the inhibition of carbohydrate digestion or absorption in the gastrointestinal tract. Carbohydrate digestion and absorption is a multistage process occurring in different parts of the gastrointestinal tract, and it starts in the oral cavity by the enzyme ptyalin, which is a salivary amylase. The crucial mechanisms of carbohydrate digestion and absorption occur in the small intestine, where pancreatic α-amylase, responsible for polysaccharide digestion, mainly starch, is secreted into the duodenum [5]. Oligosaccharides and Molecules 2019, 24, 3669; doi:10.3390/molecules24203669 www.mdpi.com/journal/molecules

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call