Abstract

The aim of the present study was to formulate and evaluate in situ gelling syringeable nanoemulgels (NEGs) of ketoprofen for periodontal delivery. Application of 3-factor 3-level design was employed using the Box–Behnken experimental design for the optimization of nanoemulsion using three independent variables such as percent concentration (v/v) of oil (X1), Smix (mixture of surfactant and cosurfactant) (X2) and water (X3); while the particle size (nm) (Y1), polydispersity index (Y2) and zeta potential (mV) (Y3) were used as dependent variables. The NEG was evaluated based on their drug content, pH measurement, mucoadhesion on the goat buccal mucosa, syringeability and inverted sol-gel transition temperature. The drug release data were analyzed for curve fitting based on the Korsmeyer–Peppas law, and the n-values of optimized A5 and A8 formulations were found 0.3721 and 0.3932, respectively, confirmed that both the formulations followed pseudo Fickian diffusion (n < 0.43). The formulation A8 with the optimal drug release was identified as the best NEG formulation. Results of rheological, mucoadhesion and syringeability studies showed the suitability of desired sol-gel property for periodontal drug delivery. The Herschel–Bulkley model was the best fit model to explain the flow behavior of optimized formulation. Using the HET-CAM method, significantly lower in vitro toxicity was indicated the suitability of developed NEG for intra-pocket delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.