Abstract

Aim: This work aimed to develop a sustained released hydrophilic matrix tablet of Aceclofenac for better therapeutic action. 
 Background: Conventional dosage form didn't provide the desired level of drug release. Even many-marketed sustained-release tablets didn't always meet the satisfactory level of drug release. It was a challenging job for pharmaceutical scientists to develop a well-sustained release formulation. Keeping this perspective in mind a robust sustained release formulation was designed, developed and optimized with nontoxic, inert viscoelastic, semisynthetic polymers which will be accepted worldwide.
 Objective: The objective of this research was to develop an Aceclofenac sustained released matrix tablet, which will deliver the desired level of drug release.
 Method: Aceclofenac sustained released tablet was prepared with Methocel K-100M Premium (Hydroxypropyl Methylcellulose) and Unigel 270 (Pregelatinized starch). These two excipients were selected as independent formulation variables with three separate levels (high, intermediate and low). Nine batches of hydrophilic matrix tablets of Aceclofenac were prepared according to the 32 Factorial Design with an average weight of 365 mg/tablet. Each prepared batch of tablets was then evaluated for drug content, physical parameters and drug release. Mathematical models were then generated using Analysis of Variance employing Design-Expert Software version 8.0.7.1 for % cumulative release at T1 hr, T4 hr and T7 hr. FTIR spectroscopy was carried out to evaluate drug-excipients interaction after formulation.
 Results: Design-Expert Software after analyzing the release data of prepared 9 batches provides an optimized composition of formulation. The optimized batch showed desirable results for cumulative % release (CPR)T1hr, CPR T4hr and CPR T7hr are 35.61, 52.16 and 61.98 respectively. 
 Conclusion: Application of statistical experimental design, the physicochemical studies and the in vitro-release study, the mathematically predicted formulation and its manufacturing and validation of aceclofenac sustained-release tablets showed great advancement from the trial-and-error method of development of sustained-release drug delivery systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call