Abstract
The aim of this research was to develop a new hydrophilic matrix system containing meropenem (MEX). Extended-release tablets are usually intended for once-a-day administration with benefits to the patient and lower discontinuation of the therapy. Formulations were developed with hydroxyl propyl methyl cellulose or poly (ethylene oxide) as hydrophilic polymers, with different molecular weights (MWs) and concentrations (20 and 30%). The tablets were found to be stable (6 months at 40 ± 2°C and 75± 5% relative humidity), and the film-coating process is recommended to avoid MEX photo-degradation. The dissolution profiles demonstrated an extended-release of MEX for all developed formulations. Dissolution curves analyzed using the Korsmeyer exponential equation showed that drug release was controlled by both drug diffusion and polymer relaxation or erosion mechanisms. A more erosion controlled system was obtained for the formulations containing lower MW and amount of polymer. With the increase in both MW and amount of polymer in the formulation, the gel layer became stronger, and the dissolution was more drug-diffusion dependent. Formulations containing intermediate MW polymers or high concentration (30%) of low MW polymers demonstrated a combination of extended and complete in vitro drug release. This way, these formulations could provide an increased bioavailability in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Innovative Science & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.