Abstract

Introduction: The current work's objectives are to build numerous floating drug delivery systems utilising various wax concentrations to prolong the release of dapagliflozin and to study the influence of sodium alginate on the system's buoyancy. Dapagliflozin is used as a anti diabetic drug which is used in treatment of type-2 diabetes.The goal of the study is to create sodium-based emulsion gel beads with wax incorporated utilising a modified emulsion-gelation process. Method: Emulsion gelation method used for preparation of floating beads. The Model drug was mixed with olive oil-containing sodium alginate wax before being hot-melted, homogenised, and then extruded into a calcium chloride solution. The manufactured Wax-incorporated Emulsion Gel Beads were analysed for Micromeritics investigations, entrapment efficacy, in-vitro buoyancy rate, and dissolution rate. Result: Several preformulation experiments, including bulk density, tapped density, and Carr's index, were within acceptable ranges, and highest drug release after 12 hours is 96.63% particularly for batch F2. Wax was added to the formulation to greatly extend the drug release; however, it was not enough to maintain the release of a highly water-soluble medication. Conclusion: It is possible to conclude that the usage of hydrophobic carriers such as waxes can be used to provide the desired sustained release effect. Oils and other low-density components were utilised to help the formulation's flotation. The study concluded that floating wax microspheres may use as medication carrier to prolong drug release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call