Abstract

The main objective of this investigation was to study the feasibility of developing a vaginal bioadhesive microbicide using a SRI's proprietary two-polymer gel platform (SR-2P). Several formulations were prepared with different combinations of temperature-sensitive polymer (Pluronic® F-127) and mucoadhesive polymer (Noveon® AA-1), producing gels of different characteristics. Prototype polymeric gels were evaluated for pH, osmolality, buffering capacity, and viscosity under simulated vaginal semen dilutions, and bioadhesivity using ex vivo mini pig vaginal tissues and texture analyzer. The pH of the polymeric gel formulations ranged from 5.1 to 6.4; the osmolality varied from 13 to 173mOsm. Absolute viscosity ranged from 513 to 3,780cPs, and was significantly reduced (1.5- to 3-fold) upon incubation with simulated vaginal and semen fluid mixture. Among the tested gels (indicated in the middle row as a molar ratio of a mixture of Noveon vs. Pluronic), only SR-2P retained gel structure upon dilution with simulated fluids and mild simulated coital stress. The pH of the SR-2P gel was maintained at about 4.6 in simulated vaginal fluid and also showed high peak force of adhesion in mini pig vaginal tissue. Furthermore, SR-2P gel caused no or only minimal irritation in a mouse vaginal irritation model. The results of this preliminary study demonstrated the potential application of SR-2P gel as a vaginal microbicide vehicle for delivery of anti-HIV agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call