Abstract

The Transdermal Drug Delivery System (TDDS) is one of the novel routes for systemic delivery of drugs through intact skin. A transdermal patch (TP) is a medicated patch that is placed on skin for delivery of medication through skin into the blood stream. The aim of present study was to formulate and evaluate a Unani transdermal patch that could be used for antiemetic therapy. The incorporation of Unani ingredients, namely, Khardal (Brassica nigra), Zanjabeel (Zingiber officinale), Podina (Mentha arvensis), and Sirka (Vinegar) were envisaged. The TP was prepared by solvent evaporation technique and was evaluated for organoleptic characteristics and other physicochemical properties, such as thickness, weight uniformity, folding endurance, moisture content, drug content, and tolerability and acceptability of patch. The in vitro permeation study of the patch was carried out through Franz diffusion cell using egg shell membrane as barrier membrane. Phosphate buffer pH 7.4 was used as dissolution medium and the temperature was maintained at 37 ± 1°C. The in vitro permeation study of the prepared TP indicated a time dependent increase in drug release throughout the study. The percentage of cumulative drug release was found to be 77.38% in 24 hours. The study shows a new approach to work in Unani pharmaceutics.

Highlights

  • The Transdermal Drug Delivery System (TDDS) is one of the novel routes for systemic delivery of drugs through the intact skin [1]

  • The ultimate goal of this dosage design is to maximize the flux through skin and at the same time minimize retention and metabolism of drug in the skin. It ensures that compounds are delivered, preferably at a specific rate, to the systemic circulation [2, 3]

  • The aim of the present study was to formulate and evaluate a Unani transdermal patch that could be used for antiemetic therapy

Read more

Summary

Introduction

The Transdermal Drug Delivery System (TDDS) is one of the novel routes for systemic delivery of drugs through the intact skin [1]. It ensures that compounds are delivered, preferably at a specific rate, to the systemic circulation [2, 3]. The TDDS can deliver certain medications to systemic circulation in a more convenient and effective way than conventional dosage form. The potential of skin as a path of drug administration has been amply demonstrated by the acceptability of marketed therapeutic systems. It is estimated that worldwide market revenues for transdermal products were around US$ 6 billion in 2009, shared between the USA (56%), Europe (32%), and Japan (7%), and are likely to reach a staggering US$ 10 billion in 2015 and even more in 2020 [4]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call