Abstract

The effective conductivity of carbon nanotube (CNT) networks as furnished by a manufacturer is experimentally extracted using two independent measurement setups. A mathematical model that is based on the percolation theory to describe the variation of conductivity as a function of frequency for different packing densities is deduced by fitting the mathematical equation to the curves of conductivity extracted from microwave measurements. The physical-mathematical model provides a better prediction of the conductivity of CNTs networks at high frequencies. This model will be used in full-wave solver to have more realistic values of conductivity and hence better modeling of radio frequency devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call