Abstract

Based on the concept of classical phase, we formulate a new explanation for the quantum phase from the quantum mechanical point of view. The quantum phase is the canonically conjugate variable of an angular momentum operator, which corresponds to the angular position φ in an actual physical space with a classical reference frame, but it takes a complex exponential form eiφ≡cosφ+i sinφ in the abstract Hilbert space of a quantum reference frame. This formulation is simply the famous Euler formula in a complex number field. In particular, when φ = π/2, the correlative quantum phase is a unitary pure imaginary number eiπ/2≡cos(π/2)+i sin(π/2) ≡ i. By using a photon state-vector function that is the general solution of photon Schrodinger equation and can completely describe a photon’s behavior, we discuss the relationship between the angular momentum of a photon and the phase of the photon; we also analyze the intrinsic relationship between the macroscopic light wave phase and the microscopic photon phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.