Abstract

Gemcitabine-loaded core-shell nanoparticles (CSNPs), comprised of a cross-linked HSA-core and PLGA-shell, were prepared through a modified double emulsification method, and the processing parameters were systematically investigated. The optimized CSNPs had a particle size of 241±36.2nm and an encapsulation efficiency of 41.52%. The core-shell structure was characterized by optical microscope (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The amorphous nature of the encapsulated drug was confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). An in vitro release study demonstrated that the CSNPs had an improved sustained release profile controlled by erosion of materials in combination with drug diffusion. In vivo pharmacokinetics of CSNPs obtained a bigger area under concentration-time curve (AUC), t 1/2, and C max compared to free drug solution. The results suggest that HSA-PLGA-based CSNPs can be a promising carrier for the sustained release of gemcitabine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call