Abstract

Abstract Gastroretentive bilayer tablets of calcium carbonate (CC) were developed using D-optimal mixture design. The effect of formulation factors such as levels of HPMC K100 M (X1), sodium bicarbonate (X2), and HPMC E15 LV (X3) on responses like floating lag time (R1) and release of CC at 1 h (R2) and 6 h (R3) was elucidated. The optimized formulations developed by numerical optimization technique were found to have short floating lag time (2.85 ± 0.98 min), minimum burst release (27.02 ± 1.18%), and controlled yet near complete release (88.98 ± 2.75%) at 6 h. In vivo radiographic studies in rabbits indicated that optimized batch displayed a mean gastric retention time (GRT) of 5.5 ± 1 h which was significantly prolonged (P < 0.05) compared to the conventional tablets that displayed a GRT of less than 1 h. The studies proved that the gastroretentive tablets can be a promising platform to improve bioavailability of nutrients having absorption window in upper gastrointestinal tract.

Highlights

  • Gastroretentive bilayer tablets of calcium carbonate (CC) were developed using D-optimal mixture design

  • The FTIR spectrum of CC, the physical mixture of the CC with the other excipients used, and the bilayer tablet are portrayed in Figure 4a–c, respectively

  • The IR spectrum of the physical mixture depicted the broad band that can be assigned to OH stretching along with the characteristic absorption peak at the same position, though the peak intensity differed indicating the absence of any interaction between CC and other excipients in the physical admixture

Read more

Summary

Introduction

Abstract: Gastroretentive bilayer tablets of calcium carbonate (CC) were developed using D-optimal mixture design. The effect of formulation factors such as levels of HPMC K100 M (X1), sodium bicarbonate (X2), and HPMC E15 LV (X3) on responses like floating lag time (R1) and release of CC at 1 h (R2) and 6 h (R3) was elucidated. The optimized formulations developed by numerical optimization technique were found to have short floating lag time (2.85 ± 0.98 min), minimum burst release (27.02 ± 1.18%), and controlled yet near complete release (88.98 ± 2.75%) at 6 h. In vivo radiographic studies in rabbits indicated that optimized batch displayed a mean gastric retention time (GRT) of 5.5 ± 1 h which was significantly prolonged (P < 0.05) compared to the conventional tablets that displayed a GRT of less than 1 h. The studies proved that the gastroretentive tablets can be a promising platform to improve bioavailability of nutrients having absorption window in upper gastrointestinal tract.

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call