Abstract

Objective: The purpose of this study was to design and optimize a novel drug nanoparticles-loaded oral fast dissolving film (NP-OFDF) using Box–Behnken design–response surface methodology.Methods: Drug nanosuspensions produced from high pressure homogenization were transformed into oral fast dissolving film containing drug nanoparticles by casting methods. Herpetrione (HPE), a novel and potent antiviral agent with poor water solubility that was extracted from Herpetospermum caudigerum, was studied as the model drug. The formulations of oral fast dissolving film containing HPE nanoparticles (HPE-NP-OFDF) were optimized by employing Box-Behnken design–response surface methodology and then systematically characterized.Results: The optimized HPE-NP-OFDF was disintegrated in water within 20 s with reconstituted nanosuspensions particle size of 299.31 nm. Scanning electron microscopy (SEM) images showed that well-dispersed HPE nanoparticles with slight adhesion to each other were exposed on the surface of film or embedded in film. The X-ray diffractogram (XRD) analysis suggested that HPE in the HPE-NP-OFDF was in the amorphous state. In-vitro release study, approximate 77.23% of HPE was released from the HPE-NP-OFDF within 5 min, which was more than eight times compared with that of HPE raw materials (9.57%).Conclusion: The optimized HPE-NP-OFDF exhibits much faster drug release rates compared to HPE raw material, which indicated that this novel NP-OFDF may provide a potential opportunity for oral delivery of drugs with poor water solubility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call