Abstract
The assumption of local thermal equilibrium (LTE) is very common in the study of reacting flows in porous media. The assumption simplifies the structure of the solutions and places fewer constraints on computational methods for the domain and boundary conditions. However, in certain systems, such as gas/solid metal hydride reactors, the boundary conditions may impose high energy transfer rates which produce slowly evolving phase change fronts coupled with rapid kinetics. Overall performance of the systems is proportional to the release or absorption of hydrogen, and this is sensitively related to temperature. Thus, capturing local departures from LTE is required. This paper directly evaluates the influence of these effects by solving an NLTE (non-local thermal equilibrium) formulation for coupled reactors as a function of the interphase heat transfer coefficient, hsf. The reactor dynamics and overall energy balances are compared to solutions previously obtained from LTE calculations. The results appear to be the first NLTE results for coupled reactors. They confirm the existence of NLTE effects and suggest the magnitude of hsf for which they can be minimized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.