Abstract

Oral candidiasis is the most common opportunistic infection affecting patients with the human immunodeficiency virus. Miconazole buccal tablets or miconazole gel are approved for the treatment of oropharyngeal candidiasis. However, buccal films present more flexibility and also offer protection for the wounded mucosa, reducing pain. Due to their small size and thickness, buccal films may improve patients' compliance, compared to tablets. Additionally, they may increase the relatively short residence time on the mucosa of oral gels, which are easily removed by saliva. Polymeric films loaded with miconazole nitrate were prepared by a casting/solvent evaporation methodology using chitosan, carbopol, gelatin, gum arabic, and alginate to form the polymeric matrices. The morphology of films was investigated by scanning electron microscopy; interactions between polymers were analyzed by infrared spectroscopy and drug crystallinity by differential thermal analysis and X-ray diffraction. Films were characterized in terms of thickness, folding endurance, tensile properties, swelling, adhesiveness, and drug release. Finally, the antifungal activity against cultures of the five most important fungal opportunistic pathogens belonging to Candida genus was investigated. The more appropriate formulations were those based on chitosan-gelatin and chitosan-carbopol which showed good mechanical properties and adhesiveness, a relative low swelling index, improved drug release, and showed better in vitro activity against Candida cultures than miconazole nitrate raw material. Thus, it will be possible to produce a new pharmaceutical form based on polymeric films containing chitosan and miconazole nitrate, which could be loaded with low drug concentration producing the same therapeutic effect against Candida cultures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.