Abstract

Novel emulsion-type vaccine delivery systems based on the amphiphilic bioresorbable polymer poly(ethylene glycol)-block-poly(lactide-co-epsilon-caprolactone) (PEG-b-PLACL) and selected oils were developed here. Physicochemical characterizations such as stability, a droplet test, microscopic aspects, and in vitro release showed that PEG-b-PLACL-emulsified formulations have several advantages over traditional vaccine adjuvants in that they are stable, reproducible, and homogeneous fine particles with an appropriate size to facilitate the induction of potent immune responses. Different dispersion-type emulsions have provided different release profiles using ovalbumin in model studies. Immunogenicity studies in mice have shown that antigen-specific antibody titers and T-cell proliferative responses, as well as the secretion of IFN-gamma, were significantly enhanced for ovalbumin after formulation with PEG-b-PLACL-based emulsions. These features are of great interest for applications in delivery systems of prophylactic and therapeutic vaccine candidates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call