Abstract

Objective: The main objective of the study was to develop gliptin loaded polymeric nanomicelles by direct dissolution method. The comparative evaluation studies were performed to study the effect of polymer concentration on particle size, entrapment efficiency, loading capacity and drug release of the formulation. Methods: Gliptin loaded polymeric nanomicelles were prepared by the direct dissolution method. The formulations were prepared by varying the concentration of polymer and drug concentration was kept constant in all the formulations. The concentration of polymer (pullulan) was maintained 0.1%, 0.5% 1% in formulation F-1, F-2 and F-3, respectively. The effect of polymer concentration on mean particle size, zeta potential, % entrapment efficiency, % loading capacity and in vitro drug release was studied. Results: The optimized nanoformulation was obtained with pullulan 0.1% concentration with a mean particle diameter of 368.2nm and zeta potential value (-7.96mV) indicating greater stability. Conclusion: Hence F-1 was considered to be the best formulation for the preparation of gliptin loaded polymeric nanomicelles. Hence, it can be concluded that polymeric nanomicellar approach can be beneficial to improve the bioavailability and poor permeability of class III drugs like gliptins and thus can be a better approach for controlled drug delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call