Abstract

The present research work “Formulation and Evaluation of In-situ gels enriched with Tropicamide loaded solid lipid nanoparticles”. To overcome the problems of side effects and to increase the bioavailability of tropicamide loaded solid lipid nanoparticles are containing with suitable lipids (glycerin trimyristate, Tristearin, Phosphatidylcholine & soyabean lecithin) with stabilizers (poloxamer 188) and surfactant like polysorbate 80. The interaction between drug, lipids & polymer by performing with FTIR no incompatibility with each other. The particle morphology was carried out by SEM & AFM in solid lipid nanoparticle formulation. The particle size was ranges from 213.6 ± 2.16nm to 538.0 ± 6.53 nm. The zeta potential ranges form -18.3mV to 25.6mV. The entrapment efficiency of free tropicamide was ranges from 74.13 % to 90.17%. The drug content was ranges from 0.212mg/ml to 0.912mg/ml. The SLN formulations must be transparent white colour and semi solid consistency. The pH 7.0 to 8.0 in all formulation. The gelling strength of gels TSLNGF1 to TSLNGF12 was ranges from 72 ± 1 sec to 117 ± 2 sec. The bio adhesive force was ranges from 10.12 ±1.01 dynes/cm2 to 23.12 ± 1.91 dynes/cm2. The viscosity of prepared formulation ranges from 415 ± 1.94 cps to 652 ± 1.41 cps. The spread ability studies of all formulation were ranges from 09 gms/sec to 18 gms/sec. The Accelerated stability the formulations does not undergo any chemical Changes. In vitro Franz’s diffusion studies of SLN enriched in gels TSLNGF1 to TSLNGF12 among the various formulation best formulations was TSLNGF6; its follows first order kinetics.
 Keywords: Solid Lipid Nanoparticles; Tropicamide; In- situ gels; In vitro diffusion studies

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.