Abstract
The purpose of this investigation is to establish anti-diabetic activity relationship as well as efficiency of formulated guar gum matrix tablet using microencapsulated glibenclamide (GBLD). This research is an approach to utilize pharmaceutical excipients as an alternative hypoglycemic agent. In order to execute the objective, GBLD microspheres were formulated by emulsion solvent evaporation method using dichloromethane and methanol as solvent system which was transferred drop after drop into encapsulating medium i.e. liquid paraffin light. The formulated microspheres were exposed to various assessment parameters like drug entrapment efficiency, % yield, particle size distribution, and average particle size, the morphology of surface, dissolution study (in vitro) and micromeritics of prepared microspheres. By using these microspheres, matrix tablets were then prepared which were further evaluated for weight variation, thickness, friability, hardness, drug content, stability study, disintegration time, swelling index and dissolution (in vitro) studies were carefully carried out. Betwixt all the formulated microspheres GEM3 was found to best optimized with respect to evaluation parameters. The results obtained were found within the desired ranges where % yield 93.75%, drug entrapment efficiency 95.627% at 12th hour, and the average particle size was observed to be 179.4±0.12 µm. Then, by using the method of direct compression matrix tablets of optimized microspheres GEM3 were prepared and drug release (in vitro) was performed. The obtained results of performed parameters on matrix tableted microspheres were within the acceptable range according to IP guidelines. Out of all formulated matrix tableted microspheres, formulation GMT4 and GMT7 showed an in-vitro % drug release of 95.257 and 94.404 at 12th hour in pH 7.4 phosphate buffer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Research in Pharmaceutical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.