Abstract

Objective The aim of this study was to formulate and evaluate the oral fast-dissolving film of lisinopril for the effective management of hypertension and cardiac diseases. Materials and methods Fast-dissolving films were prepared by the solvent-casting method using a combination of different polymers, HPMC E5 LV, HPMC E 3 and HPMC 4KM, along with PEG as a plasticizer. The Fourier-transform infrared study for the drug-polymer interaction was carried out. Evaluation of physical parameters such as physical appearance, surface texture, uniformity of weight, uniformity of strip thickness, surface pH, folding endurance, uniformity of drug content and percentage of moisture absorption were performed. Kinetic data analysis for the release study and the stability study were also performed. Result and conclusion Results of uniformity of weight, thickness, folding endurance, surface pH, tensile strength, percentage drug content, swelling index, tensile strength and percentage elongation of all the films were found to be satisfactory with respect to variation of these parameters between films of same formulation. The Fourier-transform infrared study indicated that there was no interaction between the drug and the polymers. The in-vitro drug release study showed that a better rate of drug release was achieved by formulations FA3, FB1, FB4 FC8 and FD10 compared with other formulations. The stability study did not show any significant difference in the external appearance, the drug content and the in-vitro drug release. The ex-vivo study indicated that the drug has a better ability to cross the sublingual barrier at a faster rate, and hence the delivery system was found to be promising as it has the potential of overcoming the drawbacks associated with tablet formulations available in the market presently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call