Abstract

Objective: The objective of this work was to increase the bioavailability of Aspirin to the retina by increasing its bioavailability to blood. This was achieved by forming aspirin-loaded PLGA nanoparticles Methods: Aspirin-loaded PLGA nanoparticles were prepared by a solvent evaporation process. The PLGA was dissolved in the proper solvent and added dropwise to the Aspirin-albumin solution revolving at 3000 rpm. Glutaraldehyde was used as a cross-linker at 20% concentration. The nanoparticles were obtained after passing the solution through HPH and subsequent centrifugation. Results: The prepared nanoparticles were found to be spherical with the smooth surface as seen in SEM. and with a size of 160.9 nm. Aspirin-loaded PLGA nanoparticles showed in vitro drug release of 71.4 % and ex-vivo permeation of 66.2 %. The formulation was found to be stable for six months. Conclusion: The developed aspirin-loaded polymeric nanoparticles could be effective for the controlled delivery of aspirin in the early prevention of diabetic retinopathy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.