Abstract

Galbanic acid (GBA) is an active sesquiterpene coumarin derivative, with various medicinal benefits, including anticancer properties. However, the low solubility of GBA is the main limitation of its clinical applications. In this study, we used a nanosystem based on poly (D, l-lactide)-polyethylene glycol (PLA-PEG), for the delivery of GBA to C26 colon carcinoma cells. The physicochemical characteristics of nanoparticles (NPs) prepared by the emulsification-evaporation method were evaluated. MTT assay was used to compare the anticell proliferation of GBA and PLA-PEG-GBA against C26 cell lines. PLA-PEG-NPs with an average size of about 140 nm had an enhanced release of GBA at a pH of 5.5 compared with a pH of 7.4. Cytotoxicity studies showed that the IC 50 of the PLA-PEG-GBA NPs (8 µM) was significantly lower than free GBA (15 µM). In the in vivo study, PLA-PEG-GBA NPs exhibited remarkable efficacy and reduced in vivo toxicity in C26 colon carcinoma tumor-bearing female BALB/c mice. To study the antiangiogenesis effect of the NPs, tumor sections were stained with an anti CD34 antibody. The results show the CD34 (+) vessels were decreased in the GBA and PLA-PEG-GBA treated mice by more than 75% and 90%, respectively. These results suggest that the encapsulation of GBA into the PLA-PEG could potentially be used for the treatment of colorectal cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.