Abstract

The purpose of this study was to develop a drug-loaded nanosystem that has the ability to achieve flexible yet rate-controlled release of model drug isoniazid (INH) employing either an aqueous or emulsion-based salting-out approach. Formulation conditions were aimed at reducing the polymeric size with subsequent rate-modulated INH release patterns from the polymeric nanosystem. The emulsion-based salted-out nanosystems had particle sizes ranging from 77-414 nm and a zeta potential of -24 mV. The dispersant dielectric constant was set at 78.5 and a conductivity of 3.99 mS/cm achieved. The reduced nanosystem size of the aqueous-based approach has demonstrated an intrinsically enhanced exposure of methacrylic acid-ethyl acrylate to zinc sulphate which was employed as a crosslinking reagent. This resulted in robustly interconnected polymeric supports in which INH was efficiently embedded and subsequently released. The multi-layer perceptron data obtained showed that the aqueous and emulsion-based salting out approaches had Power (law) (MSE = 0.020) and Linear (MSE = 0.038) relationships, respectively. Drug release from the nanosystems occurred in two phases with an initial burst-release in aqueous-based nanosystems (30-100%) and significantly lower bursts observed in emulsion-based nanosystems (20-65%) within the first 2 h. This was followed by a gradual exponential release phase over the remaining 12 h. The nanosystems developed demonstrated the ability to control the release of INH depending on the formulation approach adopted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.