Abstract

Most of the current clinically used anti-HIV and antimalarial drugs have low bioavailability, either due to poor solubility and permeability, rapid clearance from anatomical reservoirs and poor retention at their site of action (e.g. due to the p-glycoprotein efflux system), and extreme first-pass metabolism (e.g. by the cytochrome P450 enzymes). Hence, new approaches such as the incorporation of drug absorption enhancers (DAEs) (also referred to as bioenhancers) into dosage forms, and exploration of nanocarriers such as liposomes as novel dosage forms, are needed and may provide a viable means that could improve the bioavailability of both anti-HIV and antimalarial drugs. Liposomes loaded with efavirenz or mefloquine in combination with drug absorption enhancers, as well as placebo dosage forms, were prepared using a thin-lipid film hydration technique and characterized for their particle size and zeta potentials, entrapment efficiency, in vitro drug release, and in vitro drug permeability. Liposomes were further investigated for their biocompatibility (safety) using H-4-II-E liver cells in vitro. Drug-loaded liposomes prepared using l-α-phospatidylcholine, dioleoyl (DOPC) and cholesterol (CHOL) (1:1mol/mol) as well as liposomes made of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), CHOL, and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (4:6:26mol/mol/mol) exhibited the best results in terms of their entrapment efficiency, particle size, zeta potential, in vitro drug release, and permeability. DSPC:CHOL:DPPC liposomes released EFV-based formulations better than DPPC:CHOL liposomes for immediate release behaviour. DOPC:CHOL liposomes produced a controlled release and more drug was released in the presence of DAEs for both EFV (0.4-fold higher) and MQ-based (sevenfold higher) formulations in the first 2h. However, these liposomes were less biocompatible (< 50% cell viability) with liver cells. DOPC:CHOL and DSPC:CHOL:DPPC liposomes could provide a useful nano-formulation platform, which could ensure drug loading, followed by sustained release of both anti-HIV and antimalaria drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call