Abstract

To overcome the problems associated with niosomes, proniosomes - a dry powder - was prepared to nanoencapsulate catechins using Span 60 as surfactant, cholesterol as stabilizer and maltodextrin, lactose monohydrate and pullulan as wall materials. The proniosomes were made by the thin-film hydration technique, and were characterized for fortification in milk beverages. Scanning and atomic force microscopic images showed the varying morphology and ultrastructure of the proniosomes. The mean hydrodynamic diameter of 193.57-262.52 nm, polydispersity index of 0.24-0.25 and zeta potential of -15.8 to -24.73 were suggestive of the size, homogeneity and stability of the catechin-loaded proniosomes. X-ray powder diffractograms and Fourier transform infrared (FTIR) spectra provided insight about the interaction between catechins and wall materials. Entrapment efficiency and in vitro release were calculated to determine the extent of nanoencapsulation of catechins and their bioavailability, respectively. The nanoencapsulates were fortified in milk and yogurt to find their organoleptic acceptability. Moisture content was found to be 20-30 g kg-1 , indicating longer stability of the proniosomes. Scanning electron microscopic and atomic force microscopic images revealed the ultrastructure and spherical-shaped morphology of proniosomes. Entrapment efficiency of catechins using pullulan as wall material was as high as 83.43%. In vitro release studies revealed the sustained release of catechins from the proniosomes. FTIR and X-ray diffraction spectra revealed the absence of chemical interactions between catechins and encapsulants. Food-grade proniosomes are a good vehicle for fortification of milk and yogurt without noticeable adverse changes in their organoleptic and physicochemical properties, thus increasing the potential for bioavailability of catechins in the gastrointestinal tract. © 2020 Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.