Abstract

Cork, the bark of Quercus suber L., in addition to presenting several notable physical-mechanical properties, possesses a distinctive look and feel that make it attractive for interior surfaces, such as in furniture, wall paneling, or flooring. This work envisaged the development of a coating based on cork granules, a subproduct from the wine stopper industry, capable of creating a smooth surface similar to natural cork. In order to avoid the high rugosity that characterizes surfaces coated with paints that incorporate cork granules, a new solution was developed, based on a foamed acrylic binder, applied by knife coating. The foam formulation was successfully optimized, using appropriate additives and resorting to mechanical agitation to promote the generation of air bubbles. The addition of cork granules did not hinder foam stability, and the final coating displayed the intended visual and sensory characteristics. Dynamic Mechanical Analysis was performed on the pristine acrylic foam and on the composite foam showed a stiffening effect associated with the presence of cork granules, and a thermal transition centered at around −10 °C, associated with the acrylic binder’s glass transition. The surface has hardness slightly lower than cork, depending on the amount of particles incorporated. Pull-off testing consistently resulted in substrate failure, indicating that the coating’s cohesion and adhesion are excellent. The developed coating showed to have the intended functionality while being easily applicable on flat panel surfaces. The fact that a foam is used as a binder system allows for a smooth and soft surface, having excellent opacity with minimal usage of cork.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.