Abstract

The purpose was to investigate the effectiveness of an ethylcellulose (EC) bead matrix and different film-coating polymers in delaying drug release from compacted multiparticulate systems. Formulations containing theophylline or cimetidine granulated with Eudragit® RS 30D were developed and beads were produced by extrusion–spheronization. Drug beads were coated using 15% wt/wt Surelease® or Eudragit® NE 30D and were evaluated for true density, particle size, and sphericity. Lipid-based placebo beads and drug beads were blended together and compacted on an instrumented Stokes B2 rotary tablet press. Although placebo beads were significantly less spherical, their true density of 1.21 g/cm3 and size of 855 μm were quite close to Surelease®-coated drug beads. Curing improved the crushing strength and friability values for theophylline tablets containing Surelease®-coated beads; 5.7 ± 1.0 kP and 0.26 ± 0.07%, respectively. Dissolution profiles showed that the EC matrix only provided 3 h of drug release. Although tablets containing Surelease®-coated theophylline beads released drug fastest overall (t44.2% = 8 h), profiles showed that coating damage was still minimal. Size and density differences indicated a minimal segregation potential during tableting for blends containing Surelease®-coated drug beads. Although modified release profiles >8 h were achievable in tablets for both drugs using either coating polymer, Surelease®-coated theophylline beads released drug fastest overall. This is likely because of the increased solubility of theophylline and the intrinsic properties of the Surelease® films. Furthermore, the lipid-based placebos served as effective cushioning agents by protecting coating integrity of drug beads under a number of different conditions while tableting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.