Abstract
Energy-conserving algorithms are necessary to solve nonlinear elastodynamic problems in order to recover long term time integration accuracy and stability. Furthermore, some physical phenomena (such as friction) can generate dissipation; then in this work, we present and analyse two energy-consistent algorithms for hyperelastodynamic frictional contact problems which are characterised by a conserving behaviour for frictionless impacts but also by an admissible frictional dissipation phenomenon. The first approach permits one to enforce, respectively, the Kuhn–Tucker and persistency conditions during each time step by combining an adapted continuation of the Newton method and a Lagrangean formulation. In addition the second method which is based on the work in [P. Hauret, P. Le Tallec, Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact, Comput. Methods Appl. Mech. Eng. 195 (2006) 4890–4916] represents a specific penalisation of the unilateral contact conditions. Some numerical simulations are presented to underscore the conservative or dissipative behaviour of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.