Abstract

Oxide supported noble metals are extensively investigated for ambient formaldehyde oxidation, and the Ag-CoOx complex is one promising combination in terms of cost and activity. Further, we previously observed that cooperating Ag with Li + greatly boosted formaldehyde degradation on CoOx. Yet, there is still room for improvement in removal efficiency, mineralization capacity and resistance to severe conditions. These objectives could be realized via strategically formulating the Li+ sites of Li-CoOx composite in this sister study. Three samples with Li + ---Co3+—O2- connections (L-CO), spinel Li+ (LCO-S) and layered Li+ (LCO-L) were obtained at low (300 °C), moderate (500 °C) and high (700 °C) temperatures, respectively. The specific Li+ positions and componential interaction were demonstrated by Hyperspectral imaging (HSI), XRD, SEM, TEM, HAADF mapping, UV–vis DRS and XPS. Moreover, the effect of reactive oxygen exposure on catalytic oxidation of formaldehyde (330–350 mg/m3) was disclosed through CO-TPR and O2-TPD. Compared with the LCO-S and LCO-L, L-CO exhibited dominant formaldehyde degradation due to the larger content of surface oxygen. After Ag decoration, the Li+---Co3+—O2- connections uniquely caused a strong binding of Ag species with catalyst host, which boosted the amount of reactive oxygen and finally resulted in an even higher elimination of ∼73% (CO2 yield = ∼21%), 47% higher than that of the L-CO (CO2 yield = ∼6%). But in contrast, the Ag@LCO-S only achieved ∼53% removal (CO2 yield = ∼9%) and Ag modification was powerless in altering the inertness of LCO-L, demonstrating that the chemical environment of alkali metal is crucial to effectively tuning the catalyst activity. The advantage of Ag@L-CO in formaldehyde depollution was further reflected from its much better resistance to moisture and aromatic compound omnipresent in indoor air. For the first time, this study extended the understanding of the alkali-metal-promoted formaldehyde oxidation reaction to an in-depth level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.